Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosignals ; 28(1): 14-24, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33382545

RESUMO

The consumption of dairy products, particularly of low fat milk, has been shown to be associated with the occurrence of Parkinson's disease. This association does not necessarily reflect a pathophysiological role of milk intake in the development of Parkinson's disease. Nevertheless, the present review discusses a potential mechanism possibly mediating an effect of milk consumption on Parkinson's disease. The case is made that milk is tailored in part to support bone mineralization of the suckling offspring and is thus rich in calcium and phosphate. Milk intake is thus expected to enhance intestinal calcium phosphate uptake. As binding to fatty acids impedes Ca2+ absorption, low fat milk is particularly effective. Calcium and phosphate uptake inhibit the formation of 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), the active form of vitamin D. Calcium inhibits 1,25(OH)2D3 production in part by suppressing the release of parathyroid hormone, a powerful stimulator of 1,25(OH)2D3 formation. Phosphate excess stimulates the release of fibroblast growth factor FGF23, which suppresses 1,25(OH)2D3 formation, an effect requiring Klotho. 1,25(OH)2D3 is a main regulator of mineral metabolism, but has powerful effects apparently unrelated to mineral metabolism, including suppression of inflammation and influence of multiple brain functions. In mice, lack of 1,25(OH)2D3 and excessive 1,25(OH)2D3 formation have profound effects on several types of behavior, such as explorative behavior, anxiety, grooming and social behavior. 1,25(OH)2D3 is produced in human brain and influences the function of various structures including substantia nigra. In neurons 1,25(OH)2D3 suppresses oxidative stress, inhibits inflammation and stimulates neurotrophin formation thus providing neuroprotection. As a result, 1,25(OH)2D3 is considered to favorably influence the clinical course of Parkinson's disease. In conclusion, consumption of milk could in theory accelerate the downhill course of neuronal function in Parkinson's disease. However, substantial additional experimentation is required to define the putative causal role of 1,25(OH)2D3 in the pathophysiology of Parkinson's disease and its sensitivity to milk consumption.


Assuntos
Inflamação/prevenção & controle , Leite , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/epidemiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cálcio/administração & dosagem , Fator de Crescimento de Fibroblastos 23 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/prevenção & controle , Vitamina D/administração & dosagem , Vitamina D/análogos & derivados
2.
Neurosignals ; 28(1): 14-24, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33393746

RESUMO

The consumption of dairy products, particularly of low fat milk, has been shown to be associated with the occurrence of Parkinson's disease. This association does not necessarily reflect a pathophysiological role of milk intake in the development of Parkinson's disease. Nevertheless, the present review discusses a potential mechanism possibly mediating an effect of milk consumption on Parkinson's disease. The case is made that milk is tailored in part to support bone mineralization of the suckling offspring and is thus rich in calcium and phosphate. Milk intake is thus expected to enhance intestinal calcium phosphate uptake. As binding to fatty acids impedes Ca2+ absorption, low fat milk is particularly effective. Calcium and phosphate uptake inhibit the formation of 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), the active form of vitamin D. Calcium inhibits 1,25(OH)2D3 production in part by suppressing the release of parathyroid hormone, a powerful stimulator of 1,25(OH)2D3 formation. Phosphate excess stimulates the release of fibroblast growth factor FGF23, which suppresses 1,25(OH)2D3 formation, an effect requiring Klotho. 1,25(OH)2D3 is a main regulator of mineral metabolism, but has powerful effects apparently unrelated to mineral metabolism, including suppression of inflammation and influence of multiple brain functions. In mice, lack of 1,25(OH)2D3 and excessive 1,25(OH)2D3 formation have profound effects on several types of behavior, such as explorative behavior, anxiety, grooming and social behavior. 1,25(OH)2D3 is produced in human brain and influences the function of various structures including substantia nigra. In neurons 1,25(OH)2D3 suppresses oxidative stress, inhibits inflammation and stimulates neurotrophin formation thus providing neuroprotection. As a result, 1,25(OH)2D3 is considered to favorably influence the clinical course of Parkinson's disease. In conclusion, consumption of milk could in theory accelerate the downhill course of neuronal function in Parkinson's disease. However, substantial additional experimentation is required to define the putative causal role of 1,25(OH)2D3 in the pathophysiology of Parkinson's disease and its sensitivity to milk consumption.


Assuntos
Encéfalo/metabolismo , Calcitriol/metabolismo , Cálcio da Dieta/metabolismo , Cálcio/metabolismo , Leite/metabolismo , Doença de Parkinson/metabolismo , Animais , Calcitriol/antagonistas & inibidores , Cálcio da Dieta/efeitos adversos , Fator de Crescimento de Fibroblastos 23 , Humanos , Leite/efeitos adversos , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Fatores de Risco , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/metabolismo
3.
Neurosignals ; 27(1): 40-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769259

RESUMO

1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol) is a powerful regulator of mineral metabolism. The hormone increases calcium and phosphate plasma concentrations in part by stimulation of intestinal absorption and renal reabsorption of calcium and phosphate. It is primarily, but not exclusively, produced in the kidney. Renal 1,25(OH)2D3 formation is stimulated by calcium and phosphate deficiency and by parathyroid hormone which is up-regulated by hypocalcemia. 1,25(OH)2D3 formation is inhibited by fibroblast growth factor FGF23, which is up-regulated by phosphate excess and requires Klotho to become effective. Klotho- or FGF23-deficiency leads to excessive plasma 1,25(OH)2D3-, Ca2+- and phosphate-concentrations with severe soft tissue calcification and accelerated aging. Tissue calcification and premature aging are prevented by NH4Cl without affecting 1,25(OH)2D3-formation. 1,25(OH)2D3 has powerful effects apparently unrelated to mineral metabolism, including anti-inflammatory actions and modification of multiple brain functions. Excessive 1,25(OH)2D3 formation in klotho-deficient NH4Cl-treated mice leads to an amazing surge of exploratory behavior, lack of anxiety and decreased depression, effects dissipated by low vitamin D diet. Conversely, vitamin D deficient mice display reduced explorative behavior, enhanced anxiety, aberrant grooming, submissive social behavior, social neglect and maternal cannibalism. 1,25(OH)2D3 is generated in human brain, and acts on diverse structures including prefrontal cortex, hippocampus, cingulate gyrus, thalamus, hypothalamus, and substantia nigra. In neurons 1,25(OH)2D3 suppresses oxidative stress, inhibits inflammation, provides neuroprotection, down-regulates a variety of inflammatory mediators and up-regulates a wide variety of neurotrophins. Diseases postulated to be favorably modified by 1,25(OH)2D3 include multiple sclerosis, Parkinson´s disease, Alzheimer´s disease, depression, bipolar disorder and schizophrenia. Clearly, substantial additional experimentation is required to fully understand the neuro-psycho-pathophysiological role of 1,25(OH)2D3 and to exploit 1,25(OH)2D3 or related agonists in the treatment of neuro-psychiatric disorders.


Assuntos
Encéfalo/metabolismo , Calcitriol/metabolismo , Transtornos Mentais/metabolismo , Animais , Encefalite/metabolismo , Fator de Crescimento de Fibroblastos 23 , Humanos , Camundongos , Neurônios/metabolismo , Vitamina D/metabolismo , Deficiência de Vitamina D
4.
Sci Rep ; 6: 24879, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109615

RESUMO

Klotho, a protein mainly expressed in kidney and cerebral choroid plexus, is a powerful regulator of 1,25(OH)2D3 formation. Klotho-deficient mice (kl/kl) suffer from excessive plasma 1,25(OH)2D3-, Ca(2+)- and phosphate-concentrations, leading to severe soft tissue calcification and accelerated aging. NH4Cl treatment prevents tissue calcification and premature ageing without affecting 1,25(OH)2D3-formation. The present study explored the impact of excessive 1,25(OH)2D3 formation in NH4Cl-treated kl/kl-mice on behavior. To this end kl/kl-mice and wild-type mice were treated with NH4Cl and either control diet or vitamin D deficient diet (LVD). As a result, plasma 1,25(OH)2D3-, Ca(2+)- and phosphate-concentrations were significantly higher in untreated and in NH4Cl-treated kl/kl-mice than in wild-type mice, a difference abrogated by LVD. In each, open field, dark-light box, and O-maze NH4Cl-treated kl/kl-mice showed significantly higher exploratory behavior than untreated wild-type mice, a difference abrogated by LVD. The time of floating in the forced swimming test was significantly shorter in NH4Cl treated kl/kl-mice compared to untreated wild-type mice and to kl/kl-mice on LVD. In wild-type animals, NH4Cl treatment did not significantly alter 1,25(OH)2D3, calcium and phosphate concentrations or exploratory behavior. In conclusion, the excessive 1,25(OH)2D3 formation in klotho-hypomorphic mice has a profound effect on murine behavior.


Assuntos
Di-Hidroxicolecalciferóis/metabolismo , Comportamento Exploratório , Glucuronidase/deficiência , Cloreto de Amônio/administração & dosagem , Animais , Cálcio/sangue , Di-Hidroxicolecalciferóis/sangue , Hipercinese , Proteínas Klotho , Camundongos , Fosfatos/sangue , Agitação Psicomotora
5.
Kidney Blood Press Res ; 41(1): 99-107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881935

RESUMO

BACKGROUND/AIMS: Klotho is required for the inhibitory effect of FGF23 on 1,25(OH)2D3 formation and Klotho-hypomorphic mice (kl/kl) suffer from severe tissue calcification due to excessive 1,25(OH)2D3 formation with subsequent increase of Ca2+ and phosphate concentrations and stimulation of osteogenic signaling. The excessive tissue calcification dramatically accelerates aging and leads to premature death of the animals. Osteogenic signaling in those mice is disrupted by treatment with NH4Cl, which prevents tissue calcification and early death of kl/kl mice. The present study explored whether the beneficial effects of NH4Cl treatment could be mimicked by NH4NO3 treatment. METHODS: The kl/kl mice had free access to tap water either without or with addition of NH4NO3 (0.28 M) starting with the mating of the parental generation. Calcification of trachea, lung, kidney, stomach, heart and vessels was visualized by histology with von Kossa staining. Plasma phosphate concentration was determined utilizing photometry, blood gas and electrolytes utilizing a blood Gas and Chemistry Analysis System and plasma 1,25(OH)2D3 concentration with ELISA. RESULTS: In untreated kl/kl mice plasma 1,25(OH)2D3 and phosphate concentrations were elevated, and the mice suffered from marked calcification of all tissues analyzed. Untreated kl/kl mice further suffered from respiratory acidosis due to marked lung emphysema. NH4NO3-treatment decreased both, blood pCO2 and HCO3-, decreased calcification of trachea, lung, kidney, stomach, heart and vessels and increased the life span of kl/kl mice more than 1.7-fold (♂) or 1.6-fold (♀) without significantly affecting extracellular pH or plasma concentrations of 1,25(OH)2D3, Ca2+, phosphate, Na+, and K+. CONCLUSIONS: NH4NO3-treatment turns respiratory acidosis into metabolic acidosis and mitigates calcification thus leading to a substantial extension of kl/kl mice survival.


Assuntos
Calcinose/tratamento farmacológico , Calcinose/metabolismo , Glucuronidase/deficiência , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Nitratos/uso terapêutico , Animais , Calcinose/patologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Proteínas Klotho , Masculino , Camundongos , Camundongos Knockout , Nitratos/farmacologia , Resultado do Tratamento
6.
J Mol Med (Berl) ; 94(1): 95-106, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26307633

RESUMO

UNLABELLED: Klotho, a protein expressed mainly in the kidney, is required for the inhibitory effect of FGF23 on renal 1,25(OH)2D3 formation. Klotho counteracts vascular calcification and diverse age-related disorders. Klotho-hypomorphic mice (kl/kl) suffer from severe vascular calcification and rapid aging. The calcification is at least in part caused by excessive 1,25(OH)2D3, Ca(2+), and phosphate concentrations in blood, which trigger osteogenic signaling including upregulation of alkaline phosphatase (Alpl). As precipitation of calcium and phosphate is fostered by alkaline pH, extracellular acidosis could counteract tissue calcification. In order to induce acidosis, acetazolamide was added to drinking water (0.8 g/l) of kl/kl and wild-type mice. As a result, acetazolamide treatment of kl/kl mice partially reversed the growth deficit, tripled the life span, almost completely reversed the calcifications in trachea, lung, kidney, stomach, intestine, and vascular tissues, the excessive aortic alkaline phosphatase mRNA levels and the plasma concentrations of osteoprotegerin, osteopontin as well as fetuin-A, without significantly decreasing FGF23, 1,25(OH)2D3, Ca(2+), and phosphate plasma concentrations. In primary human aortic smooth muscle cells, acidotic environment prevented phosphate-induced alkaline phosphatase mRNA expression. The present study reveals a completely novel effect of acetazolamide, i.e., interference with osteoinductive signaling and tissue calcification in kl/kl mice. KEY MESSAGES: Klotho deficient (kl/kl) mice suffer from hyperphosphatemia with dramatic tissue calcification. Acetazolamide (ACM) treatment partially reversed the growth deficit of kl/kl mice. In kl/kl mice, ACM reversed tissue calcification despite continued hyperphosphatemia. ACM tripled the life span of kl/kl mice. In human aortic smooth muscle cells, low extracellular pH prevented osteogenic signaling.


Assuntos
Acetazolamida/farmacologia , Acidose/induzido quimicamente , Inibidores da Anidrase Carbônica/farmacologia , Glucuronidase/genética , Osteogênese/efeitos dos fármacos , Calcificação Vascular/prevenção & controle , Envelhecimento/genética , Envelhecimento/patologia , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/sangue , Animais , Calcitriol/sangue , Cálcio/sangue , Células Cultivadas , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/metabolismo , Humanos , Hiperfosfatemia/genética , Proteínas Klotho , Camundongos , Camundongos Knockout , Fosfatos/sangue , Transdução de Sinais/efeitos dos fármacos , Calcificação Vascular/genética , Calcificação Vascular/patologia
7.
Am J Physiol Renal Physiol ; 310(1): F102-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26538435

RESUMO

Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice.


Assuntos
Calcinose/prevenção & controle , Glucuronidase/deficiência , Bicarbonato de Sódio/farmacologia , Acidose/sangue , Acidose/genética , Aldosterona/sangue , Animais , Calcinose/sangue , Calcinose/genética , Calcinose/patologia , Calcitriol/sangue , Cálcio/sangue , Genótipo , Glucuronidase/genética , Hiperaldosteronismo/sangue , Hiperaldosteronismo/genética , Hiperaldosteronismo/prevenção & controle , Hiperfosfatemia/sangue , Hiperfosfatemia/genética , Hiperfosfatemia/prevenção & controle , Absorção Intestinal/efeitos dos fármacos , Proteínas Klotho , Longevidade , Camundongos Knockout , Fenótipo , Fosfatos/sangue , Eliminação Renal/efeitos dos fármacos , Fatores de Tempo , Calcificação Vascular/sangue , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
8.
Proc Natl Acad Sci U S A ; 112(17): 5521-6, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870278

RESUMO

Urea cycle defects and acute or chronic liver failure are linked to systemic hyperammonemia and often result in cerebral dysfunction and encephalopathy. Although an important role of the liver in ammonia metabolism is widely accepted, the role of ammonia metabolizing pathways in the liver for maintenance of whole-body ammonia homeostasis in vivo remains ill-defined. Here, we show by generation of liver-specific Gln synthetase (GS)-deficient mice that GS in the liver is critically involved in systemic ammonia homeostasis in vivo. Hepatic deletion of GS triggered systemic hyperammonemia, which was associated with cerebral oxidative stress as indicated by increased levels of oxidized RNA and enhanced protein Tyr nitration. Liver-specific GS-deficient mice showed increased locomotion, impaired fear memory, and a slightly reduced life span. In conclusion, the present observations highlight the importance of hepatic GS for maintenance of ammonia homeostasis and establish the liver-specific GS KO mouse as a model with which to study effects of chronic hyperammonemia.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Hiperamonemia/enzimologia , Fígado/enzimologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Marcação de Genes , Glutamato-Amônia Ligase/genética , Hiperamonemia/genética , Hiperamonemia/patologia , Hiperamonemia/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia , Locomoção , Memória , Camundongos , Camundongos Knockout , Estresse Oxidativo/genética
9.
J Am Soc Nephrol ; 26(10): 2423-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25644113

RESUMO

Klotho, a cofactor in suppressing 1,25(OH)2D3 formation, is a powerful regulator of mineral metabolism. Klotho-hypomorphic mice (kl/kl) exhibit excessive plasma 1,25(OH)2D3, Ca(2+), and phosphate concentrations, severe tissue calcification, volume depletion with hyperaldosteronism, and early death. Calcification is paralleled by overexpression of osteoinductive transcription factor Runx2/Cbfa1, Alpl, and senescence-associated molecules Tgfb1, Pai-1, p21, and Glb1. Here, we show that NH4Cl treatment in drinking water (0.28 M) prevented soft tissue and vascular calcification and increased the life span of kl/kl mice >12-fold in males and >4-fold in females without significantly affecting extracellular pH or plasma concentrations of 1,25(OH)2D3, Ca(2+), and phosphate. NH4Cl treatment significantly decreased plasma aldosterone and antidiuretic hormone concentrations and reversed the increase of Runx2/Cbfa1, Alpl, Tgfb1, Pai-1, p21, and Glb1 expression in aorta of kl/kl mice. Similarly, in primary human aortic smooth muscle cells (HAoSMCs), NH4Cl treatment reduced phosphate-induced mRNA expression of RUNX2/CBFA1, ALPL, and senescence-associated molecules. In both kl/kl mice and phosphate-treated HAoSMCs, levels of osmosensitive transcription factor NFAT5 and NFAT5-downstream mediator SOX9 were higher than in controls and decreased after NH4Cl treatment. Overexpression of NFAT5 in HAoSMCs mimicked the effect of phosphate and abrogated the effect of NH4Cl on SOX9, RUNX2/CBFA1, and ALPL mRNA expression. TGFB1 treatment of HAoSMCs upregulated NFAT5 expression and prevented the decrease of phosphate-induced NFAT5 expression after NH4Cl treatment. In conclusion, NH4Cl treatment prevents tissue calcification, reduces vascular senescence, and extends survival of klotho-hypomorphic mice. The effects of NH4Cl on vascular osteoinduction involve decrease of TGFB1 and inhibition of NFAT5-dependent osteochondrogenic signaling.


Assuntos
Cloreto de Amônio/uso terapêutico , Calcinose/etiologia , Calcinose/prevenção & controle , Glucuronidase/deficiência , Animais , Feminino , Proteínas Klotho , Masculino , Camundongos
10.
J Clin Invest ; 123(2): 812-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23298834

RESUMO

Klotho is a potent regulator of 1,25-hydroxyvitamin D3 [1,25(OH)2D3] formation and calcium-phosphate metabolism. Klotho-hypomorphic mice (kl/kl mice) suffer from severe growth deficits, rapid aging, hyperphosphatemia, hyperaldosteronism, and extensive vascular and soft tissue calcification. Sequelae of klotho deficiency are similar to those of end-stage renal disease. We show here that the mineralocorticoid receptor antagonist spironolactone reduced vascular and soft tissue calcification and increased the life span of kl/kl mice, without significant effects on 1,25(OH)2D3, FGF23, calcium, and phosphate plasma concentrations. Spironolactone also reduced the expression of osteoinductive Pit1 and Tnfa mRNA, osteogenic transcription factors, and alkaline phosphatase (Alpl) in calcified tissues of kl/kl mice. In human aortic smooth muscle cells (HAoSMCs), aldosterone dose-dependently increased PIT1 mRNA expression, an effect paralleled by increased expression of osteogenic transcription factors and enhanced ALP activity. The effects of aldosterone were reversed by both spironolactone treatment and PIT1 silencing and were mitigated by FGF23 cotreatment in HAoSMCs. In conclusion, aldosterone contributes to vascular and soft tissue calcification, an effect due, at least in part, to stimulation of spironolactone-sensitive, PIT1-dependent osteoinductive signaling.


Assuntos
Glucuronidase/deficiência , Espironolactona/farmacologia , Fator de Transcrição Pit-1/metabolismo , Calcificação Vascular/prevenção & controle , Aldosterona/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/genética , Humanos , Proteínas Klotho , Camundongos , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Pit-1/genética , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
11.
Am J Physiol Renal Physiol ; 299(5): F1171-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719979

RESUMO

Klotho is a membrane protein participating in the inhibitory effect of FGF23 on the formation of 1,25-dihydroxyvitamin-D(3) [1,25(OH)(2)D(3)]. It participates in the regulation of renal tubular phosphate reabsorption and stimulates renal tubular Ca(2+) reabsorption. Klotho hypomorphic mice (klotho(hm)) suffer from severe growth deficit, rapid aging, and early death, events largely reversed by a vitamin D-deficient diet. The present study explored the role of Klotho deficiency in mineral and electrolyte metabolism. To this end, klotho(hm) mice and wild-type mice (klotho(+/+)) were subjected to a normal (D(+)) or vitamin D-deficient (D(-)) diet or to a vitamin D-deficient diet for 4 wk and then to a normal diet (D(-/+)). At the age of 8 wk, body weight was significantly lower in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice, klotho(hm)D(-) mice, and klotho(hm)D(-/+) mice. Plasma concentrations of 1,25(OH)(2)D(3,) adrenocorticotropic hormone (ACTH), antidiuretic hormone (ADH), and aldosterone were significantly higher in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice. Plasma volume was significantly smaller in klotho(hm)D(-/+) mice, and plasma urea, Ca(2+), phosphate and Na(+), but not K(+) concentrations were significantly higher in klotho(hm)D(+) mice than in klotho(+/+)D(+) mice. The differences were partially abrogated by a vitamin D-deficient diet. Moreover, the hyperaldosteronism was partially reversed by Ca(2+)-deficient diet. Ussing chamber experiments revealed a marked increase in amiloride-sensitive current across the colonic epithelium, pointing to enhanced epithelial sodium channel (ENaC) activity. A salt-deficient diet tended to decrease and a salt-rich diet significantly increased the life span of klotho(hm)D(+) mice. In conclusion, the present observation disclose that the excessive formation of 1,25(OH)(2)D(3) in Klotho-deficient mice results in extracellular volume depletion, which significantly contributes to the shortening of life span.


Assuntos
Glucuronidase/genética , Glucuronidase/fisiologia , Hiperaldosteronismo/genética , Hormônio Adrenocorticotrópico/sangue , Aldosterona/sangue , Animais , Análise Química do Sangue , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Calcitriol/metabolismo , Cultura em Câmaras de Difusão , Eletrólitos/metabolismo , Fator de Crescimento de Fibroblastos 23 , Hiperaldosteronismo/metabolismo , Proteínas Klotho , Camundongos , Camundongos Knockout , Hormônio Paratireóideo/sangue , Volume Plasmático/fisiologia , Sobrevida , Vasopressinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...